三角形の面積の二等分線の求め方\(2\)
\(2\)番目に底辺\(\mathrm{BC}\)の中点の座標を求めます。中点の座標を求め方は次の通り。
中点座標の求め方
・ \(x\)の座標どうしを足して\(2\)で割る
・ \(y\)の座標どうしを足して\(2\)で割る
三角形の面積の二等分線の求め方\(2\)
\(2\)、底辺\(\mathrm{BC}\)の中点の座標を求める
・ \(x\)の座標どうしを足して\(2\)で割る
・ \(\mathrm{B}\)の\(x\)座標は\(1\)、\(\mathrm{C}\)の\(x\)座標は\(7\)
・ \((1+7)\div2=4\)
・ 中点の\(x\)座標は\(4\)
・ \(y\)の座標どうしを足して\(2\)で割る
・ \(\mathrm{B}\)の\(y\)座標は\(0\)、\(\mathrm{C}\)の\(y\)座標は\(0\)
・ \((0+0)\div2=0\)
・ 中点の\(y\)座標は\(0\)
・ 中点の座標は\((4,\kern2pt0)\)
・
中点の求め方については
もあわせてどうぞ。